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ABSTRACT

A proced ure is presented for designing an adap tive control

for a single—input, single—output process admitting an essentially

unknown but f ixed linear model, so that the resulting closed—loop

system is stable with zero steady—state tracking error between the

output of the process and the output of a prespe cified linear

reference model. The adaptive controller Is a differentiator—free

dynamical system forced only by the process input and output, as

well as a reference input.
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INTRODUCTION

In this paper we consider the problem of designing an adaptive control

for a single—input, single—output process admitting an essentially unknown but

fixed linear model, so that the tracking error between the output of the re—

suiting controlled system and the output of a prespecified linear reference

model is regulated to zero asymptotically. We assume that only the process

input and output can be measured and we require the adaptive controller to be

a differentiator—free dynamical system realizable with conventional analog

components.

Although the development of a methodology for designing such a system is

clearly one of the fundamental problems of adaptive control, surprisingly

little seems to be known about the problem ’s possible solution. In (1] Parks

put forth the idea of Liapunov redesign which can be shown to solve the prob-

lem for process models of dimension one and two . In [2] Monopoli

casts the problem in a useful form (a simplification of which is used in this

paper) by making the important observation that It is not really necessary to

separa tely identify process model parameters and control feedback gains. How-

ever the arguments in [2] concerning stability contain errors and do not justify

the paper ’s main claims; indeed there is reason to believe that the adaptive

control proposed in (2] can result In an unstable system [3]. Similar errors

concerning stability can be found in (4] where a form of ‘implicit differentiation’

is proposed to get around the problems which arise when one attempts to extend

previous results to systems of dimension greater than two.

The purpose of this paper is to present what we believe to be the first solu—

tion to the aforementioned adaptive control problem which results in a stable

closed—loop system in which all signals and gains are guaranteed to remain
bounded. Th. proposed controller requires no impliéit or explicit differentia-

L _ _4• ~~~~~~~~~~~~~~~~~~~~~ -.- -~ - —~ —
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The only assumptions made about the process are that it admits a transfer

function model with left—half plane zeros and that an upper bound for the

transfer function’s dimension, the relative degree of the transfer function,

and the sign of the transfer function ‘gain’ are known.

Notation

In the sequel, prime denotes transpose. If n is a positive integer, then

E {l ,2,...,n) and {O ,l,2,...,n). Depending on context the letter s may

be viewed as an indeterminate, a differential operator or Laplace transform

variable. The zero state output of a linear system with Input f(t) and trans-

fer function u(s)/B(s) is often written as (a/B)f(t). If M(t) and N(t) are

two mxn matrices of time func tions , we write M = N (c) if each element of the

matrix M — N is bounded in magnitude by a time function which is decaying to

zero exponentially fast.

I

-
~~
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Our basic assumption is that the relationship between the pr5ocess input

u and output y can be modelled by a linear system with strictly proper trans-

fer function ~~u (s)/B~ (s) where g is a constant gain, a (s) is a stable,

monic polynomial of degree m and B
r
(s) is a monic polynomial of degree n .

The only data assumed known are the sign of g ,  an integer n satisfy ing n ~ n

and the relative degree d n — m of the process transfer function.
p p

To motivate our selection of a reference model which the process is ul-

timately supposed to follow , let us recall that if E is any linear dynamical

(i.e., differentiator—free) compensator with reference tnput r, measured input

y and output u, and if u(s)/B(s) is the resulting closed—loop transfer function

from r to y, then the relative degree of u(s)/B(s) cannot be less than n~ — m .

Indeed, this fundamental constraint on u(s)/B(s) can be relaxed only by incor-

porating differentiators in E. Clearly any adaptive system employing a ref er—

ence model not respecting this constraint {e.g. [4]) must involve some form of

implicit (if not explicit) differentiation. Since we have stipulated that our

adaptive controller be differentiator—free, we must require the relative degree

of our reference model transfer function a(s)/B (s) to satisfy

deg(B) — deg(u) ~ d (1)

We further assume that B(s) is a stable polynomial.

Leimna 1: There exist stable, monic polynomials and ~y’1
(s) of degrees one

and d — 1 respectively and a stable, proper transfer function h(s) such that

- 
a(s) ~ h(s) (2)
B(s) y(s)

where

1(8) — ?~
(s)Y

~
(s) (3)

3 .
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To proceed , select w(s) to be any stable monic polynomial of degree n

and let {u
1

(s) , i c nil be any basis for the vector space of polynomials of

degree less than n (e.g., u
i
(s) — 8i1 ,j c 

~
). Define the 2n + 1 sensitivity

function vector 0 — (00110l,...)02
] by the equations

6
0

(t) h(s)r( t)

0
i
(t) — y( t) i c n (4)

Oj.ffl(t) — 
it(s) 

u(t) i C

and write

e( t) y ( t) — y~ (t) (5)

for the tracking error between the process output and the output of the refer-

ence model with input r(t), i.e.

r( t) (6)

Proposition 1: There exists a constant parameter vector q such that

e ’~~
l? (u+ 0q) (e) (7)

Proof: Write 6 and p for the unique quotient and remainder of ‘1 divided by

~~
; thus

wy 68 + p (8)

where deg(p) c deg(8 ) < n; hence there exist numbers such that

n
p/g — E (9)

P

Since deg(p) c deg(B),(8) implies that deg(wy) deg(6B ) and also that

6 ii monic. Hencea6is monic and de5(a~6) — des(a~) — deg (8 ) + deg(iry) — deg(it).

• 
“ . . 
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~~— u 6 — i r  (10)p

then deg(~) < deg(ir) — n. Hence there exist numbers q
1 such tha t

U

T~ E q 4 w~ (11)
il  fl+.L

Using (8) and then (10) we may write

(iry — p)y( t )

6g u u ( t )

g(w + n)u(t)

Thus
S ((~

)/g ) ny(t) — ~‘ y(t) + ~ u(t) + u(t) (c)

Hence from (2),(5) and (6) we see that

S (p/g )
• e(t) - ~~ 

(
ut  + ~ y(t) + ~~~ u(t) - (h/gp)r(t)) (c)

Set q
0 

— 1/g , and q = col.(q01...,q2 ].

It now follows from (9),(1l) and (4), that (7) is true. 0

2. CONTROL EQUATIONS

The following signals must be generated to realize the proposed adaptive

controller. With as defined by Lemma 1 and O~ as in (4), set

c — col. Fc 0 ,c1,...,~2 3 where

~i
(t) — 

~y~~s) 0i(t), i C (12)

If d > 1 set k — d — 1 and define

•i
(t) - -sign (

~)( 
~~~~ 

(0(t )))  c(t ) ,  i C (13)

- T. iTi~~~~~~~~. ~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~ - - - - _________
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~~ Par I c~ k., .lmt A
1 be ~ fi*e4 pctsitkve ñuzsb~r. ‘Define d,gnali ~~~t),’.’t c k

and *1~~(t)~~ i C 
~~~~~ i C be the formulas

(a)

i—i
w — 4’ + E iji w i c {2,3,...,k} (b)
~ —1

— 0 i C (c) (14)

2
~~~~~ 

E(w + X )  i c k  (d)
j_l j i

— 
~~~~~~~~~~~~ 

— 

~~~1~~
(w~ + A~ ) + 

~i—l,j—1

j C j, i c {2,3,...,k) (e)

We wish to show that each of the signals defined by (14) can be generated

from y, u or r without using differentiators. To do this, we digress briefly to

introduce the following terminology.

Let f(t)  be a scalar—valued , piecewise—continuous function , defined for

t ~ 0. A scalar—valued time function v(t) defined for t ~ 0 is said to be in

class C~(f) just in case there exists a stable transfer function h(s) of rela-

tive degree j  ~ 1. such that v(t)  — h ( s ) f ( t )  (c). For example , v c c1(f )  if

and only if v is the output (mod C) of a strictly proper stable linear system

with input f.

With I ~ 1, let C1 denote the subring of the ring of time functions on [0 ,.)

(with pointwise addition and multiplication), generated by the constant functions

together with the elements of C1(u)u (y)u~~~~(r). In other words , v c C~
just in case v can be expressed as a finite sum of finite products of time func—

tions w (mod c) where v is either a constant or an element of (u)u (y)u~~~~(r).

Clearly any signal in C1 can be generated (mod c) using only conventional analog

components.

Observe that (4) implies that

6 .
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.: ‘j ~t 2 m ’. • :. .• • . [•~~
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~.~
;- -;  (15) . . -

This and (12) show that

d
..j C~~~~~1 j c ~~~~ (16)

Thus from (13) there follows

c £ (17)

Proposition 2:

c c(d+l_i) 
, i c k (18a)

,(d+l—i)
~pi j C~~. i c k , j c ~~~ 1

The proposition implies that even though the equations defining the

and involve derivatives of the these signals can nevertheless be

realized as sums and products of constants and outputs of stable , different ia tor—

free , linear systems forced by r ,u and y.

Example: For d 3 (i.e. , k = 2) It is straightforward to verify that

*1,1 
— W

i 
+ A

l~ ~2 , l = 

~~~~~ 
- 

~11(A
1 + w~), w2 = + and

Lemma 2: If 1 > 1 and if f (t )  c C~ , then ~(t) c

The simple nroof of this lemma is omitted .

Proof of Proposition 2: For 1 1, w
1 •v “i,o — 0 and 

~
‘l 1  — + A

1
, hence

from (17) , w1 e • Since A~ and 0 are constants, it follows that 
~
‘l i and ~l ~.1. a.

are elements of C as well. Thus (18) holds for 1 1.

7 
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- • Now suppose Ui~ proposition is~true. fur all .i.:~ J , ~where•:j < k d~. fixed. :- ~ -

From (14b) , ~l7) , and the inductive hypothesis there follows w
j+l C

This together with (14c) — (14e), Lemma 2 and the inductive hypothesis imply

that 
~~~~ ~ c~~~~

) 
for t c {O,l,...,j+l}. Hence by induction, the proposition

is true. 0

To characterize the proposed adaptive controller, let A0 and a
1
,i c k,

denote the coefficients of the polynomials defined by (3); i.e. s +

— 8k + a
k 
5k—l + ... + a~ ~ + a1. Let Q denote the lower triangular matrix.

1 0 . .
- . 

_*
~~~ 

1 0 . .
Q = 

~
‘22 1 (19)

- ~~k—l ,1 ~~k—2 ,l ~~k— 1,k— 1 
1 

kxk

and let 6~ be the ith element of the row vector

[61,62,...~ 6k
] =  (1IIkl~*u ...•

~~*kk ]Q 1 
• (20)

Observe that since det Q — 1, the time functions 6~ are simply sums of products

of the

The remaining equations defining the proposed adaptive controller are as

follows :

— A
0
x~ 

- ~x1 (21)

— x1~1 + $1(x0 + e), I t {l ,2,...,k—l} (22)

— — WK
)(x

O 
+ e) — E 61X1 (23)

1—1
— (sign g )(x

0 
+ e)

~ (24)

— x1(x0 + e) (25)

8

_
41.. -—



and finally
k 

-

. u — — 0~ — E (6~~ — a4)x + (4,~ 
— W )(x ,., + e) (26)

1—1 I i’ k

The adaptive controller is thus completely described by equations (4), (l2)—(l4)

and (l9)—(26).

temark: In the very special case when d 1 (i.e., k — 0) the adaptive controller is

described by (4),(l2) and u — — 0~~, where ~ is now redefined to be 4 ——(sign g )er.

3. SYSTEM STABILITY

Our main result is as follows.

Theorem 1: Let r be any bounded, piecewise—continuous reference signal. Then

y, u, x~, I C ~~~~, ~~, ~ are bounded time functions and

1

Lim e ( t) 0

Remark: From (15)—(l8),(20) , and the boundedness of r,u and y it clearly follows that

all the remaining time functions associated with the adaptive system (i.e.,

~~~~~~~~~~~~~~~ are bounded as well.

Remark: It is worth noting here that the preceding theorem says nothing about

the manner in which e(t) tends to zero as t -
~~ . A monotone e(t) would be ideal

but it is not diff icult to see that this will not be the case except possibly if

the reference signal is sufficiently rich to force the parameter errors ~(t) 
— q

and ~(t) — g to zero as t + ~~~. This issue with its obvious practical implica— -
P

tions will be examined in a future paper.

The proof of Theorem 1 depends on the following lemmas.

• 
• 9
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Proof: Let (c,A,b) canonically realize l/y
1(s) with (A ,b) is standard control

• canonical form. Then from (3),(7) and (26)

e— - — ~~cw (c) (28)To

where

— Aw + b(0(q—4) + u
0

) (29)

and

u0 -~~~(61—a 1)x1 + (~çw~)(x
0 + e) (30)

If we now define

H — A B . + b 0  (31)

z — A z + bu0 + H q  (32)

and

0 - z + H(q-~)

then
• 

A~~
’+ b(O(q-~) + U0)

It follows from (29) and the stability of A that cw — c~’ (c) and thus that

cw — cZ + cH(q—4) (33)

Since c,A,b realizes 1/y~, (31) and (12) imply that c cR. From this , (28) and

(33) there followe

e — ~~ (cz + ~~(q—4)) (c) (34)

From (13) and (31) it is straightforward to verify that 
. 

- -
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• — —sign (~~)H c

L~k
Using this and (24) we can therefore write

H~~— : (X
O

+ e )

By substituting this and (30) into (32) it is easy to see that the ith component

of z(t) must satisfy

— z~~1 
+ +~~(x0 

+ e) I ~ {l ,2,.•.,k—l}
k k

= — E a (z  - 
— x

1
) — £ &

1x + (4, — w )(x (~ + e)k 11 i i  
~~=~~ 

i k k

From these equations and (22) and (23) it clearly follows that (~ — x)  — A (z  — x)

where x — col. (x1,x2, .. . .  ,x~ ]. Since A is stable we have thus shown that z — it ( c)

and thus that cz x (c). Substitution of x for cz in (34) thus yields the1 1
desired result. 0

Leimea 4: Let z~(t)~ I ~ k, be time functions defined by the equations

(35)

i—I.
a1 — x

1 
+ E 

~~ 
z I c {2 ,3,...,k} (36 )a , j  J

Then
— —(A

1 
+ ~~~~~ + Zi+l + wi(~

c
o 
+ e), I c (l ,2, ..,k—l },(37)

2
— - _ (A

k + wk)Zk (38)

.2
11
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(20) , 6
k 

— Hence by (23) and (35) it follows that Z
k 

satisfies (38). Thus

the lemma Is true if k — 1.

Let k > 1 be fixed. From (22) and (35) there follows — x2 + $1
(x

0 
+ e);

thus from (36) — 
~*1 1

Z
1 

+ a2 + $1
(x

0 + e). Since + A
1 
by defini—

tion, a
1 
satisfies (37). It follows that the lemma is true for 1 1.

Now suppose the lemma is true for j  ~(i — 1), where (i — 1) c (l,2,..,k—l}

is fixed.

From (36)

- + 
~~~~~~~~~~~ 

+

Since by hypothesis Z
j 
satisfies (37) for i ~ i — 1, we can write

- 1—1 • 2
c

~ 

+
~~1
(*i_l,j

z
j 
+ *i...l j

(:
j+l

+ w
j

(x
o 
+ e) — (A~ + w~)z~)) 

2
-

~~ 

- 

~~ 
+

3

E

1
*i.1,j w

j
(x

o + e) + 
~~1 

+ *i_l,j_l *11,~ (A~ +

+ *i_1,i•••lzi

From this and (14) it follows that

i
zi X~~ — +1

(x
0 

+ e) + (a)
1
(x
0 
+ e) — (w~ + A

1
)z
1 j—l 1’~~~

If I < k , (22) and (39) yield -

I
— x

~~~1 + w1(x
0 + e) 

— (w~ + A
1
)z
1 ;E1

4)~ ,~
z~

Elimination of x
1~1 

using (36) shows that z
1 
satisfies (37).

If i — k , (23) and (39) yield

k 
2 

k

a — E 6 x  — (w +A )z + E *k 
Z

t .. .
~~ii~~~~

i_

k1Il

~~

:I
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But.(~5)...and (36)

.i~~ly.-x . QL,.~~ th-Qa 4e~i~e4.- in--~~~9) ~c.~an4’~~ being . - . - .~~~~~. :

the ith components of x and z respectively. From this and (20) it Is clear that
I

k It
— E 6 x  + E $ , 4 z~~— O
j~ l~~~i j—i~~’~~-’

and thus that satisfies (38). By induction, the lemma is true. 0

The assumed stability of the numerator polynomial a of the process transfer
— function is exploited in the following lemma. -

Lemma 5: Let I c be fixed. If y and its fir8t i derivatives are bounded

d—ifunctions, then each function in C Is bounded as well.

Proof: Let w and a be stable, monic polynomials of degrees d — I and i respec-

tively. Then a ira is a stable monic, polynomial of degree n - If we define

8 - a a w , then deg(~) < deg(a aw) and

(p + a air)ay —

P p

Since uaw is a stable polynomial, it follows that

ay + ay) (c)

where p/n ow is a strictly proper, stable transfer function. Since a is a poly-

nomial of degree I, it follows from the lemma’s hypothesis that

and thus (l/ir)u are bounded. -

Now let w c C~~
1(u) be fixed. Hence there exists a stable transfer function

a/ ~ with relative degree no smaller than d 
— i such that v — (/~)u. The first

two properties of &/~ imply that (w&)/6 is a stable transfer function with non-

negative relative degree. Thus * (ir /~)(lIw)u is bounded and since ir is stable,

-~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Since boundedness of r and y clearly imply boundedness of all functions in

it follows from the definition of cd—i that the lemma is true. 0

To proceed it proves useful to introduce the variables

e = e + x 0 1
(40)

j
Using (21), (27) and (35) we obtain

— — A
0 

— 
~~~~~ — (e) (41)

while from (24) , (25) and (35)

• sign(g )~~ (42)

g — ale (43)

Observe from (5), and (40) that y will be bounded provided each element of

the set

(44)

is. By differentiating each element in <y> and using (2l),(35), (40) and (41)

it is easy to see that y will be bounded provided each element In the set

— 
~~~~~~~~~~~~~~ 

(45) -

is. Continuing in this way it is quite straightforward to verify that for

1 < I ~ k the ith derivative of y, written PU) , will be bounded provided each

element of the set

Cy~
1
~). (

(I) 
~~~~~~~~~~~~ ,w 1_1}u cy > (46)

~~~
/‘

~~
-
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(37) , (42) and (43) , one readily finds that the set <
~
/> defined above has the

requIred property.

We now give a proof of Theorem 1 for the case d > 1, i.e., k > 0. The

proof for the special case d — 1 involves similar (but very much simpler) argu-

ments and will not be given.

Proof of Theorem 1: It will first be shown that e, z
1, 
I t k, ~ and ~ are bounded

time functions. For this define C(t) ~ + A~~ + g c ’q + z
1
g so that

— — — g C q  — z
1
g + C(t) (47)

and let

a(t) — Fb0~
2 + t b

1
z~ + Is ~~ Ib

0
(

~~~~~
) + b

0~
2 

+ (b
0
2/2A

0)f 
c2(t)dt) (48)

(k—i)
where b

1 
— 1, b

1 
— bj_i/ (A

i
A j,.i

), i £ {2 ,3,...,k} and b0 — (1 + (Eb
1

)/ 4A
0).

Observe that the integral in (48) is finite since by (41), c(t) must approach

zero exponentially fast. From (37), (38), (42), (43) and (47), It follows by

direct verification that

• 2 2 2 2a — —1
0

(e — (b
0

/2A
0
)c) — (b

1
A
1
/2) z

1 
— bk(Ak/ 2 + wk) zk

- E b
1

((w
1
z
1 

- ~~/2)
2 
+ (A

1
/2) (~~

1 
- z

1~1
/A
1
)
2) (49)

Since a(t) ~ 0 and &(t) ~ 0, it follows that a(t) ~ c*(O) < . Thus a(t) Is

bounded. From (48) it is now clear that , Z~~, i C k , ~ and g are bounded ; it

follows from (40) that ~ and a are bounded as well.
Boundedrtess of ~ and a1 together with (35) and (21), imply that x0 is bounded.

Since is clearly bounded, it follows from (44) that y is also. Thus by Lemma 5,

all functions in are bounded. This and (16) imply that ç is bounded. SInce

15

P ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~ .,... 
- 

-
~~~~~~~~~~~~~

--—
~~~: - - —— -- s— 

- 
- -



--
~~--

‘ -~~~~~~~~~cl~ar1y boti idecf, f~ li6~~.~:f~~~-~~4s). ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 5

show that C
1
is bounded for the case d — 2.

To reach the same conclusion for d ‘ 2 (i.e., k > 1) ,  suppose that for fixed

I C {2 ,...,k} ,  all elements of the set <~U~~)> are bounded ; this, of course,

implies that ~~~~~~~~~~~~ are bounded as well. Since 
~~~ 

is bounded for all

j  ~ It , y~
0 is bounded as is z~ as was shown previously. Now for any integer

j c { 1 2 ,...,i—l), we have by Proposition 2 that c c ’
~~~

’. Hence by Lemma 2

~
(i
~

(j+l))  
~ c

(d+l_ (I_l)) 
wttich, by definition, is a subset of C — ’

~~~; since

by Lemma 5 all functions in ~~~~~~~~~ are bounded , it follows that

bounded f o r  3 £ {l ,2,...,i—l}. Thus from (46), all elements of the set

are bounded. By induction, it now follows that all elements of <y
~~~

> are bounded

implying that y,... ~~~~ are bounded. Since k = d — 1, it now follows from Lemma

5, that C1 contains only bounded functions.

The boundedness of the functions in C
1 
together with (1S)—(18) imply that

O,r~, all and all 
~~ 

are bounded as well. This and Lemma 4 shows that x~,

I c Ic are bounded. It now follows from (26) that the first assertion of Theorem 1

is true. I

To prove that e(t) -. 0, we note from (49), and the boundedness of all func-

tions , that ~(t) is bounded. This together with the boundedness of ~ and the

fact that the integral n(t)dt converges, allows us to claim that Lim a(t) 0.
‘0

From this and (49) it follows that as t + , all a1 and ~ approach zero. Since

it
1 

a
1 and ê is bounded , ax1 is bounded and approaches zero as t + 

~~~. From this,

(21), and the fact that A~ ‘ 0 it f ollows tha t x
0 

+ 0 as t + . Theref ore by (40) ,

Lim e(t) — 0, as claimed. 0 -

•1
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In this paper we have shown that it Is possible to construct an adaptive

control for a linear process model which results in a stable closed—loop sys-

tem with zero steady—state output tracking error. While the proposed controller

is admittedly complex, to our knowledge it is the only differentiator—free

dynamical adaptive control proposed thus far which has been shown to produce

stable closed—loop operation. The existence of such a control actually runs

contrary to our own earl ier expectations ( 5 ] ,  and possibly to those of others

(6). Indeed, it would be interesting to draw connections between the modelling

assumptions in this paper and the results of [6).

Since Theorem 1 is true, independent of the stability of the open—loop

process model , the results presented here are potentially applicable to the prob—

1cm of identifying process models not assumed to be open—loop stable. Be the

appl ica tion Iden tIf ica tion or control , it is of course important to insure that

the reference signal can be selected so as to yield zero steady—state system

parameter errors. This matter will be considered in a future paper.
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